

Brazilian Journal of

OTORHINOLARYNGOLOGY

www.bjorl.org.br

ARTIGO ORIGINAL

Impact of adenotonsillectomy on vocal emission in children*,**

Spyros Cardoso Dimatos^{a,*}, Luciano Rodrigues Neves^a, Jéssica Monique Beltrame^b, Renata Rangel Azevedo^c, Shirley Shizue Nagata Pignatari^a

- ^a Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brasil
- ^b Distúrbios de Comunicação Humana, Departamento de Fonoaudiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brasil
- ^c Departamento de Fonoaudiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brasil

Recebido em 8 de setembro de 2014; aceito em 1 de fevereiro de 2015

KEYWORDS

Voice; Tonsillectomy; Adenoidectomy; Pharyngeal tonsil; Palatine tonsil

Abstract

Introduction: Adenotonsillectomy is the most common surgery performed by otolaryngologists in pediatric age, and one of the most frequently asked questions about the postoperative period is whether there is a potential for change in vocal pattern of these children.

Objective: To evaluate the impact of adenoton sillectomy in the voice emission pattern of children with hypertrophy of palatine and pharyngeal tonsils.

Methods: This is a prospective study in which we carried out perceptual auditory assessments and acoustic analysis of 26 children with adenotonsillar hypertrophy at three time points: before surgery, one month and three months after surgery. The following acoustic parameters were estimated using the Praat software: fundamental frequency, jitter, shimmer, and harmonic-noise ratio

Results: A statistically significant change was found between shimmer and harmonic-noise ratio during vowel /u/ production between the preoperative and 1st month postoperative time points. No significant differences were detected for acoustic parameters between preoperative analysis and that of the 3rd month post-operation.

DOI se refere ao artigo: http://dx.doi.org/10.1016/j.bjorl.2015.11.005

^{*}Como citar este artigo: Dimatos SC, Neves LR, Beltrame JM, Azevedo RR, Pignatari SSN. Impact of adenotonsillectomy on vocal emission in children. Braz J Otorhinolaryngol. 2016;82:151-8.

^{*} Instituição: Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brasil.

^{*} Autor para correspondência.

E-mail: sdimatos@hotmail.com (S.C. Dimatos).

Conclusion: Transient changes in acoustic parameters occur in children with adenotonsillar hypertrophy submitted to adenotonsillectomy, progressing to normalization in the 3rd post-operative month.

© 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. This is an open access article under the CC BY- license (https://creativecommons.org/licenses/by/4.0/).

PALAVRAS-CHAVE

Voz; Tonsilectomia; Adenoidectomia; Tonsila faríngea; Tonsila palatina

Impacto da adenotonsilectomia na emissão vocal em crianças

Resumo

Introdução: Adenotonsilectomia é o procedimento cirúrgico mais realizado pelos otorrinolaringologistas em pacientes pediátricos, e entre as dúvidas mais frequentes a respeito do pós-operatório, inclui-se a possibilidade de modificações no padrão vocal dessas crianças.

Objetivo: Avaliar o impacto da adenotonsilectomia no padrão de emissão vocal de crianças com hipertrofia de tonsilas palatinas e faríngea.

Método: Trata-se de estudo prospectivo, em que foram realizadas a avaliação perceptiva-auditiva e a análise acústica da voz de 26 crianças com hipertrofia adenotonsilar em três oportunidades: no pré-operatório e no 1 e 3 meses após o procedimento cirúrgico. Os parâmetros acústicos frequência fundamental, jitter, shimmer e proporção harmônico-ruído foram avaliados por meio do programa Praat.

Resultados: Houve uma alteração estatisticamente significante entre o shimmer e a proporção harmônico-ruído da emissão da vogal/u/entre o período pré-operatório e o 1 mês do pós-operatório. Não houve diferenças significantes dos parâmetros acústicos entre a análise pré-operatória e aquela realizada no 3 mês do pós-operatório.

Conclusão: Crianças com hipertrofia adenotonsilar submetidas à adenotonsilectomia cursam com alterações transitórias dos parâmetros acústicos, evoluindo com a normalização dos mesmos no 3 mês do pós-operatório.

© 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. This is an open access article under the CC BY- license (https://creativecommons.org/licenses/by/4.0/).

Introdução

Basicamente, a voz é produto de três processos fisiológicos, a saber: fluxo aéreo expiratório constante, controlado pela musculatura torácica; produção do som glótico pela vibração das pregas vocais; e a modificação desse som com amplificação e abafamento das frequências sonoras decorrentes da ação das estruturas ressonantais faríngeas, orais e nasais (trato vocal).1

Adenotonsilectomia é o procedimento cirúrgico mais realizado pelos otorrinolaringologistas, principalmente na população pediátrica. Dentre as perguntas mais frequentes acerca desse procedimento, existem dúvidas sobre as alterações no padrão vocal após a cirurgia e se as mesmas são temporárias ou definitivas.

De acordo com Mora et al., as tonsilas palatinas hipertróficas reduziriam o espaço aéreo da orofaringe, além de empurrar a língua para uma posição anteriorizada, ocasionando respiração oral, alteração da nasalidade e voz abafada.² Também é referido que a hipertrofia adenoamigdaliana causaria obstrução da região nasofaríngea e diminuição da mobilidade da musculatura velofaríngea.²

A questão da nasalidade não é a única evidência de alteração vocal após adenotonsilectomia, embora seja a mais estudada. Com a modificação do trato vocal, poderia haver alterações da qualidade vocal em decorrência de instabili-

dade fonatória, e essa instabilidade seria consequência de uma mudança no padrão vibratório das pregas vocais.^{2,3}

No entanto, até o momento, poucos estudos avaliaram a emissão vocal após a adenotonsilectomia, sendo que a maior parte destes o fizeram utilizando somente medidas subjetivas (análise perceptiva-auditiva da voz).

O objetivo deste estudo foi verificar o impacto da adenotonsilectomia no padrão de emissão vocal de crianças com hipertrofia de tonsilas palatinas e faríngeas.

Método

Trata-se de um estudo prospectivo com intervenção cirúrgica e acompanhamento pós-operatório iniciado em janeiro de 2009 e finalizado em dezembro de 2009. Foram acompanhadas 26 crianças com idades entre 5 e 10 anos de idade, portadoras de hipertrofia de tonsilas palatinas e faríngea e com indicação prévia de adenotonsilectomia.

Este trabalho foi aprovado pelo CEP, de acordo com a Resolução 196/96, da Comissão Nacional de Ética e Pesquisa - CO-NEP, que versa sobre as diretrizes e normas regulamentadoras de pesquisas envolvendo seres humanos.

As crianças foram submetidas a avaliação otorrinolaringológica com o emprego de anamnese detalhada, exame físico minucioso e nasofibrolaringoscopia. Os critérios de inclusão para a pesquisa foram: hipertrofia de tonsilas palatinas graus III ou IV, de acordo com a escala proposta por Brodsky⁴; hipertrofia da tonsila faríngea com obstrução da região nasofaríngea superior a 70%, mediante visibilização direta com o emprego da nasofibroscopia e anuência dos representantes legais dos pacientes em participar da pesquisa, concordando com o método proposto, após a explicação detalhada do estudo e a assinatura de um termo de consentimento livre e esclarecido (TCLE).

Foram excluídos da pesquisa os pacientes com disfonia ou alterações da emissão vocal, crianças na vigência de infecções das vias aéreas superiores ou inferiores, pacientes submetidos anteriormente a terapia fonoaudiológica, malformações craniofaciais ou síndromes neurológicas.

Todas as crianças foram submetidas a adenotonsilectomia pela mesma equipe médica, e sempre sob supervisão do presente pesquisador. A técnica cirúrgica empregada consistiu em adenotonsilectomia a frio, e a hemostasia foi realizada com pontos simples de fio cirúrgico absorvível (categute 2.0).

As gravações das emissões vocais foram realizadas em ambiente silencioso com o uso de microfone profissional Samson C03 (Samson Technologies, Estados Unidos), a uma distância de aproximadamente 5 cm da boca da criança, e o material adquirido foi editado no programa Sound Forge 8.0 (Sony, Japão), do qual foram extraídos os trechos de emissão das vogais sustentadas /a/, /i/ e /u/ e de fala encadeada (sequência automática e fala espontânea).

As emissões vocais dessas crianças foram gravadas em três situações, a saber:

- 1. Momento (T0) Período pré-operatório;
- 2. Momento (T30) Período de primeiro mês pós-operatório;
- 3. Momento (T90) Período de terceiro mês pós-operatório.

A avaliação perceptiva-auditiva da qualidade vocal (fala espontânea e sequência automática) foi realizada por três fonoaudiólogos experientes (estudo cego), sendo utilizada como parâmetro avaliador a escala analógico-visual (EAV) validada por Yamasaki et al.⁵

A escala analógico-visual (EAV) corresponde a uma linha de 100 mm, na qual o avaliador é orientado a marcar um ponto que represente a sensação experimentada no momento em relação à voz apresentada. Cada milímetro da escala corresponde a um grau de desvio, onde o extremo à esquerda representa ausência de alteração vocal e o extremo à direita o grau máximo de alteração. O valor de corte para discernir entre voz normal e voz alterada é 35,5 mm.⁵

A análise acústica computadorizada da voz foi utilizada na avaliação das vogais /a/, /i/ e /u/, com o emprego do programa Praat (Phonetic Sciences, University of Amsterdã, Holanda).⁶

Os parâmetros acústicos analisados foram:

- Frequência fundamental (Fo) corresponde ao número de ciclos glóticos por segundo, refletindo as características biomecânicas das pregas vocais e sua relação com a pressão subglótica;
- Jitter (J) variações ciclo a ciclo da frequência fundamental;
- Shimmer (S) medida que quantifica flutuações ciclo a ciclo na intensidade da excitação glótica; e
- Proporção harmônico-ruído (PHR) relação estabelecida entre o som produzido pela laringe e os ruídos que interferem na produção vocal.

Realizou-se a análise estatística comparando os dados pré-operatórios e pós-operatórios, sendo definido o valor de significância de 5% (p < 0,05), com o emprego dos seguintes testes:

- Teste de Friedman para cada variável, com o intuito de verificar possíveis diferenças entre os três momentos de observação;
- Teste de Wilcoxon ajustado pela correção de Bonferroni, para observar em quais momentos de observação diferemse dos demais, quando comparados aos pares.

Resultados

Foram avaliadas 26 crianças com idades entre 5 e 10 anos (média = 7,15 anos), sendo 16 do gênero masculino e 10 do gênero feminino.

Avaliação perceptiva-auditiva da voz

Em relação à avaliação perceptiva-auditiva utilizando a escala analógico-visual (EVA), houve diferença estatisticamente significante entre os três momentos de observação (tabela 1).

Com a aplicação do teste de Wilcoxon ajustado pela correção de Bonferroni, constatou-se diferença estatisticamente significante entre a avaliação do primeiro mês de pós-operatório e aquela realizada no terceiro mês de pós-operatório (p = 0,005), e a tendência de que os momentos pré-operatórios e primeiro mês de pós-operatório sejam diferentes estatisticamente (tabela 2).

Análise acústica computadorizada da voz

Vogal /a/

Em relação à vogal /a/, não houve diferença estatisticamente significante entre os parâmetros estudados (fre-

Tabela 1 Avaliação perceptiva-auditiva (EVA)										
Avaliação perceptiva-auditiva	n	Média	Desvio padrão	Mínimo	Máximo	Percentil 25	Mediana	Percentil 75	Significância (p)	
T0	26	1,442	1,087	0,200	3,900	0,500	0,850	2,225	0,002	
T30	26	1,988	1,052	0,300	4,000	1,000	2,100	2,925		
T90	26	1,473	0,981	0,200	3,200	0,700	1,200	2,500		

Tabela 2 Análise da avaliação perceptiva-auditiva										
Par de variáveis analisadas Significância (p)										
T30 - T0	0,039									
T90 - T0	0,903									
T90 - T30	0,005ª									
^a Alfa de Bonferroni = 0,016667.										

quência fundamental, Jitter, Shimmer e proporção harmônico-ruído) nos três momentos de observação (tabelas 3 a 6).

Vogal /i/

A análise da emissão da vogal sustentada /i/, nos três momentos de observação, mostrou diferença da frequência fundamental da voz entre o período pré-operatório e o terceiro mês de pós-operatório (tabelas 7 e 8).

Não foram identificadas alterações estatisticamente significantes nos demais parâmetros avaliados (Jitter, Shimmer, proporção harmônico-ruído) (tabelas 9 a 11).

Vogal /u/

Em relação à vogal /u/, não houve diferença estatisticamente significante nos parâmetros (frequência fundamental e Jitter) (tabelas 12 e 13).

Detectou-se diferença estatisticamente significante nas medidas do Shimmer e da proporção harmônico-ruído entre a gravação pré-operatória e aquela realizada no primeiro mês de pós-operatório (tabelas 14 a 17).

Discussão

Define-se como trato vocal o conjunto de estruturas anatômicas localizadas acima da região glótica, que modificam o som produzido pelas vibrações das pregas vocais com o emprego do efeito físico de ressonância sonora.⁷

Tabela 3 Frequência fundamental - Vogal /a/										
Frequência fundamental	n	Média	Desvio padrão	Mínimo	Máximo	Percentil 25	Mediana	Percentil 75	Significância (p)	
T0	26	238,403	30,873	201,259	310,992	215,525	225,529	256,087	0,382	
T30	26	240,826	31,719	190,438	324,569	219,385	237,142	252,817		
Т90	26	232,375	36,962	137,915	305,835	211,768	230,933	257,945		

Tabela 4 Jitter - Vogal /a/											
Jitter	n	Média	Desvio padrão	Mínimo	Máximo	Percentil 25	Mediana	Percentil 75	Significância (p)		
T0	26	0,887	1,017	0,192	4,155	0,352	0,526	0,899	0,707		
T30	26	0,698	0,358	0,205	1,899	0,470	0,628	0,834			
T90	26	0,595	0,340	0,239	1,493	0,391	0,467	0,685			

Tabela 5 Shimmer - Vogal /a/											
Shimmer	n	Média	Desvio padrão	Mínimo	Máximo	Percentil 25	Mediana	Percentil 75	Significância (p)		
T0	26	8,621	4,564	2,521	20,449	4,482	8,451	10,816	0,607		
T30	26	5,893	2,608	1,254	11,903	3,880	5,766	7,617			
T90	26	6,965	3,674	2,618	16,795	4,392	6,026	7,425			

Tabela 6 Proporção harmônico-ruído - Vogal /a/										
Proporção harmônico-ruído	n	Média	Desvio padrão	Mínimo	Máximo	Percentil 25	Mediana	Percentil 75	Significância (p)	
T0	26	14,098	4,367	4,234	20,818	12,821	14,289	17,018	0,857	
T30	26	14,966	3,619	7,393	22,320	12,377	14,876	17,256		
Т90	26	14,940	3,179	8,043	22,237	13,572	14,875	17,358		

Tabela 7 Frequência fundamental - Vogal /i/										
Frequência fundamental	n	Média	Desvio padrão	Mínimo	Máximo	Percentil 25	Mediana	Percentil 75	Significância (p)	
T0	26	260,239	40,543	217,994	375,138	231,627	250,910	272,441	0,048ª	
T30	26	256,229	38,329	190,388	353,938	227,330	250,870	277,795		
T90	26	245,710	34,407	192,366	316,837	219,197	239,116	274,424		
^a Alfa de Bonferroni = 0,016667.										

Tabela 8 Análise da frequência fundamental (Fo) - Vogal /i/Par de variáveisSignificância (p)T30 - T00,501T90 - T00,009aT90 - T300,058

Esta ressonância é produto da configuração tridimensional do trato vocal, da tonicidade das suas paredes, das características do revestimento mucoso e suas propriedades viscoelásticas.⁸

Quaisquer mudanças nessas características terão impacto na propagação sonora e na definição dos formantes vocais. Por exemplo, as frequências que definem o primeiro formante podem variar de acordo com mudanças no posicionamento da mandíbula, enquanto que o segundo formante é influenciado pela posição da língua.⁷ O terceiro formante está relacionado à ressonância da região acima das pregas vocais, formada pelos ventrículos laríngeos, pregas ariepiglóticas e pregas vestibulares; já o quarto e o quinto formantes são mais dependentes do comprimento do trato vocal do que da posição dos articuladores.⁷

Supõe-se que as alterações na anatomia do trato vocal oriundas de procedimentos cirúrgicos podem modificar as características vocais do indivíduo.

Mora et al. descreveram que tonsilas palatinas hipertróficas reduzem o espaço da orofaringe, anteriorizam a língua e causam hipernasalidade, respiração oral e voz abafada. Em seu estudo, foram avaliadas 40 crianças, com faixa etária variando de 4-14 anos, através de análise acústica antes e 30 dias após tratamento cirúrgico (adenotonsilectomia). Observou-se, no período pós-operatório, uma melhora estatisticamente significante de todos os parâmetros analisados: frequência fundamental, Jitter, Shimmer, relação harmônico-ruído, entre outros.²

Tabela 9	Jiitte	r - Vogal /i/							
Jitter	n	Média	Desvio padrão	Mínimo	Máximo	Percentil 25	Mediana	Percentil 75	Significância (p)
T0	26	0,907	1,066	0,190	5,585	0,310	0,618	1,007	0,240
T30	26	0,478	0,228	0,197	1,239	0,341	0,456	0,515	
T90	26	0,507	0,353	0,142	1,968	0,310	0,450	0,542	

Tabela 10	Shimmer - Vogal /i/										
Shimmer	n	Média	Desvio padrão	Mínimo	Máximo	Percentil 25	Mediana	Percentil 75	Significância (p)		
T0	26	7,033	4,625	2,479	20,331	3,181	6,146	8,910	0,089		
T30	26	4,151	2,399	0,651	12,832	2,931	3,694	4,729			
T90	26	4,864	3,424	1,551	19,216	3,151	3,788	5,876			

Tabela 11 Proporção harmônico-ruído - Vogal /i/											
Proporção harmônico-ruído	n	Média	Desvio padrão	Mínimo	Máximo	Percentil 25	Mediana	Percentil 75	Significância (p)		
T0	26	18,693	4,769	4,601	27,854	15,402	18,436	22,023	0,341		
T30	26	20,755	2,712	15,465	25,920	19,308	21,325	22,186			
T90	26	20,575	3,870	8,925	28,471	18,303	20,193	23,446			

Tabela 12 Frequência fundamental - Vogal /u/										
Frequência fundamental	n	Média	Desvio padrão	Mínimo	Máximo	Percentil 25	Mediana	Percentil 75	Significância (p)	
T0	26	261,170	44,299	174,045	347,238	229,347	252,526	290,321	0,764	
T30	26	264,623	50,040	204,910	426,145	223,374	257,706	283,011		
T90	26	256,735	38,025	207,698	327,897	222,196	247,372	284,049		

Tabela 13	Jitter -	Vogal /u/							
Jitter	n	Média	Desvio padrão	Mínimo	Máximo	Percentil 25	Mediana	Percentil 75	Significância (p)
T0	26	1,134	1,435	0,227	6,867	0,388	0,724	1,025	0,076
T30	26	0,531	0,225	0,273	1,007	0,371	0,458	0,615	
T90	26	0,539	0,215	0,245	1,243	0,380	0,527	0,658	

Tabela 14 Shimmer - Vogal /u/									
Shimmer	n	Média	Desvio padrão	Mínimo	Máximo	Percentil 25	Mediana	Percentil 75	Significância (p)
T0	26	8,117	5,282	2,908	22,404	4,448	5,968	9,990	0,019ª
T30	26	4,557	2,302	0,808	11,614	3,251	4,138	5,088	
T90	26	6,296	4,179	2,126	19,265	3,474	4,829	7,926	
^a p < 0,05.									

Tabela 15 Proporção harmônico-ruído - Vogal /u/									
Proporção harmônico-ruído	n	Média	Desvio padrão	Mínimo	Máximo	Percentil 25	Mediana	Percentil 75	Significância (p)
T0	26	19,175	6,271	4,529	27,033	16,010	21,208	24,214	0,004a
T30	26	23,761	3,230	15,513	30,059	22,222	24,158	26,103	
T90	26	22,116	4,090	10,796	28,865	20,470	22,847	25,045	
^a p < 0,05.									

Tabela 16 Análise do Shimmer (S) - Vogal /u/					
Par de variáveis	Significância (p)				
T30 - T0	0,003ª				
T90 - T0	0,159				
T90 - T30	0,058				
^a Alfa de Bonferroni = 0,016667.					

 Tabela 17
 Análise da proporção harmônico-ruído (PHR) - Vogal /u/

 Par de variáveis
 Significância (p)

 T30 - T0
 0,004ª

 T90 - T0
 0,069

 T90 - T30
 0,026

^a Alfa de Bonferroni = 0,016667.

Para Salami et al., a remoção de tecido adenoidiano, por se tratar da retirada de uma estrutura que ocupa espaço, resultaria em alteração da anatomia nasofaríngea. De modo similar, tonsilas palatinas e faríngeas aumentadas podem obstruir o fluxo aéreo nasofaríngeo e influenciar a mobilidade do palato mole. Após analisarem acusticamente crianças no período pré-operatório e no primeiro mês após a adenotonsilectomia, encontraram melhora na qualidade vocal e em todos os parâmetros acústicos analisados.³

Jarboe et al. estudaram o impacto da adenotonsilectomia em cantores profissionais. Retrospectivamente, os autores avaliaram, através de questionários respondidos por telefone, 23 pacientes no período pós-operatório tardio. Constataram que a maioria apresentou melhora da qualidade vocal após a cirurgia, e em apenas cinco pacientes houve um prejuízo da qualidade vocal no pós-operatório recente (1-4 meses), com recuperação posterior em todos os casos. Destacam que, apesar dos resultados encontrados neste estudo, a me-

lhora na qualidade vocal não justifica a indicação de adenotonsilectomia.9

Em contrapartida, Chuma et al., em seu estudo prospectivo com 23 crianças que foram submetidas a análise acústica antes e três meses após o procedimento cirúrgico (adenotonsilectomia), chegaram à conclusão de que a remoção de tecido da orofaringe tem um mínimo impacto quantitativo e qualitativo (perceptivo) em diversos aspectos da função vocal.¹⁰

Subramanian et al. avaliaram os efeitos da tonsilectomia com ou sem adenoidectomia por meio da análise acústica de 20 pacientes. Realizaram o registro vocal no dia anterior ao procedimento e no primeiro mês de pós-operatório, verificando uma redução do Shimmer. Entretanto, os pacientes não foram submetidos a análise acústica em longo prazo, podendo tal achado corresponder à alteração transitória póscirúrgica. Diferentemente do presente estudo, os autores avaliaram, também, a nasalidade, e observaram sua redução após a intervenção cirúrgica. 11

Kara et al. realizaram análise dos efeitos da cirurgia para remoção de tonsila faríngea na voz e na fala. Avaliaram 36 crianças com hipertrofia de tonsila faríngea antes e três meses após o procedimento cirúrgico. Observaram mudança significante na nasalidade e nos terceiro e quarto formantes. Similarmente ao presente estudo, não houve mudança de frequência fundamental, Shimmer e proporção harmônico ruído. Os autores afirmam que a adenoidectomia pode afetar a ressonância vocal e a nasalidade, modificando a forma e o tamanho da nasofaringe e do trato respiratório superior. 12

Para Lundeborg et al., a qualidade vocal é afetada pela hipertrofia adenotonsilar, tanto na avaliação perceptiva quanto na análise acústica. Os autores estudaram o desfecho vocal de 67 crianças após adenotonsilectomia, e concluíram que pacientes com hipertrofia adenotonsilar têm hiponasalidade, *pitch* mais grave e medidas de perturbação mais elevadas quando comparados ao grupo controle e à avaliação pós-operatória. Entretanto, não houve mudança significante na frequência fundamental antes e após o procedimento cirúrgico, demonstrando a interferência do trato vocal na sensação psicoacústica da frequência. 13

Em nosso estudo, o grupo dos pacientes estudados foi composto por crianças portadoras de hipertrofia de tonsilas palatinas e faríngeas, com idades entre 5 e 10 anos de idade. Optou-se por excluir as crianças com idade inferior a 5 anos, pois elas poderiam ter dificuldades em cumprir as tarefas solicitadas, uma vez que o código oral ainda não está plenamente estabelecido. As crianças com idade superior a 10 anos não foram incluídas no estudo pela proximidade com a muda vocal, fato este que poderia interferir na análise dos resultados coletados.

Para adequada investigação do padrão vocal dessas crianças, optou-se por duas análises, a saber: análise perceptiva -auditiva e acústica da voz.

A análise perceptiva-auditiva da voz permite uma avaliação da percepção vocal sobre dois aspectos vocais: fonte glótica e filtro ressonantal.⁷ Quando essa análise ocorre ao se observar a fala encadeada (contagem de números, narrar os meses do ano ou leitura de um texto pré-definido), ela é mais ampla e inclui, também, aspectos vocais ligados à articulação e à ressonância, sendo considerada por muitos autores o padrão ouro da avaliação vocal.⁷ Essa forma de análise permite a caracterização da qualidade vocal e a quantificação do desvio fonatório a um dado estímulo. Por ser um fenômeno es-

sencialmente auditivo e de caráter subjetivo, sua realização requer treinamento prévio e experiência dos avaliadores.⁷

Detectou-se que houve uma diferença estatisticamente significante entre a avaliação do primeiro mês de pós-operatório e aquela realizada no terceiro mês de pós-operatório, podendo-se afirmar, também, que existe uma tendência de os momentos pré-operatórios e o primeiro mês de pós-operatório serem diferentes. Esses achados suportam a hipótese de que a adenotonsilectomia seja responsável por modificações transitórias do padrão de emissão vocal, gerando uma instabilidade fonatória temporária, a qual se torna inexistente ao longo do período pós-operatório.

A análise acústica da voz desperta maior interesse, por apresentar medidas objetivas e independentes do observador-avaliador. De acordo com Vieira et al., essas medidas podem auxiliar no monitoramento terapêutico, colaborando diretamente ao verificar a efetividade de uma estratégia ou de uma abordagem terapêutica proposta. Ainda segundos os autores, os registros e medidas acústicas podem amparar a defesa do médico ou do fonoaudiólogo em disputas judiciais, onde há o questionamento da eficácia do resultado de tratamentos vocais.⁸

No presente estudo, utilizamos as vogais /a/, /i/ e /u/ para a realização da análise acústica computadorizada, e os dados coletados foram a frequência fundamental, o Jitter, o Shimmer e a proporção harmônico-ruído (PHR).

A opção por essas três vogais decorreu do fato de as mesmas formarem os vértices do polígono definido por Behlau et al.⁷, que representa as médias das frequências dos dois primeiros formantes das vogais orais do português brasileiro.

A vogal /a/ é oral, central, baixa e aberta. A vogal /i/ é oral, anterior, alta, fechada e não arredondada, e a vogal /u/ tem como características ser oral, posterior, alta, fechada e arredondada.

Ao analisar os dados obtidos, encontrou-se apenas diferença estatística do Shimmer e da proporção harmônico-ruído da vogal /u/ entre a avaliação pré-operatória e o primeiro mês de pós-operatório. Contudo, esta modificação demonstrou-se aparentemente transitória, já que não houve diferença estatística entre a avaliação pré-operatória e aquela realizada no terceiro mês de pós-operatório.

Por se tratar de uma vogal posterior, a emissão do /u/ demonstrou ser mais afetada pela modificação da anatomia decorrente da remoção do tecido adenotonsilar no período pós-operatório de um mês, fato esse compensado posteriormente, no período pós-operatório mais prolongado.

Da mesma maneira, a única diferença estatisticamente significante detectada na emissão sustentada da vogal /i/ decorreu da observação da frequência fundamental entre o período pré-operatório e o terceiro mês de pós-operatório.

Os resultados aqui apresentados demonstram concordância parcial com os resultados citados nos estudos que avaliaram os efeitos da adenotonsilectomia no primeiro mês de pós -operatório, os quais encontraram diferenças significantes em todos os parâmetros (frequência fundamental, Jitter, Shimmer e proporção harmônico-ruído).^{2,3} Talvez variações metodológicas e da padronização da amostra a ser estudada possam justificar essa variação nos dados. No entanto, esses estudos não fizeram uma avaliação em médio prazo dessas crianças (tempo = 3 meses).

Os resultados do presente estudo fornecem subsídios para concluirmos que crianças com hipertrofia de tonsilas palati-

nas e faríngeas submetidas a adenotonsilectomia cursam com alterações transitórias da qualidade vocal e dos parâmetros acústicos, evoluindo com o retorno aos padrões pré-operatórios 90 dias após o procedimento cirúrgico.

Conclusão

Crianças com hipertrofia adenotonsilar submetidas a adenotonsilectomia cursam com alterações transitórias dos parâmetros acústicos, evoluindo com a normalização dos mesmos no terceiro mês de pós-operatório.

Conflitos de interesse

Os autores declaram não haver conflitos de interesse.

Referências

- Imamura R, Tsuji DH, Sennes LU. Fisiologia da laringe. Em: Pinho SMR, editor. Fundamentos em laringologia e voz. Rio de Janeiro: Revinter; 2006. p. 1-20.
- Mora R, Crippa B, Dellepiane M, Jankowska B. Effects of adenotonsillectomy on speech spectrum in children. Int J Pediatr Otorhinolaryngol. 2007;71:1299-304.
- 3. Salami A, Jankowska B, Dellepiane M, Crippa B, Mora R. The impact of tonsillectomy with or without adenoidectomy on

- speech and voice. Int J Pediatr Otorhinolaryngol. 2008; 72:1377-84.
- Brodsky L, Poje CP. Tonsilite, tonsilectomia e adenoidectomia. Em: Bailey BJ, Johnson JT, editores. Coleção Otorrinolaringologia - Cirurgia de Cabeça e Pescoço. 4a edição Rio de Janeiro: Editora Revinter; 2009. p. 149-65.
- 5. Yamasaki R, Leão SHS, Madazio G, Padovani M, Azevedo R, Behlau M. Correspondência entre a escala analógico-visual e a escala numérica na avaliação perceptivo-auditiva de vozes. Em: XVI Congresso Brasileiro de Fonoaudiologia. Campos de Jordão, São Paulo: Sociedade Brasileira de Fonoaudiologia; 2008.
- Boersma P, Weenink D. Praat doing phonetics by computer. Amsterdam: University of Amsterdam; 2008, May. Disponível em: http://www.praat.org [acessado em 4 de abril de 2010].
- Behlau M, Pontes P. Avaliação e tratamento das disfonias. São Paulo: Lovise; 1995.
- 8. Vieira MN, Rosa LLC. Avaliação acústica na prática fonoaudiológica. Em: Pinho SMR, editor. Fundamentos em laringologia e voz. Rio de Janeiro: Revinter; 2006. p. 33-52.
- 9. Jarboe JK, Zeitels SM, Elias B. Tonsillectomy and adenoidectomy in singers. J Voice. 2001;15:561-4.
- Chuma AV, Cacace AT, Rosen R, Feustel P, Koltaii PJ. Effects of tonsillectomy and/or adenoidectomy on vocal function: laryngeal, supralaryngeal and perceptual characteristics. Int J Pediatr Otorhinolaryngol. 1999;47:1-9.
- Subramanian V. Arch Otolaryngol Head Neck Surg. 2009; 135:966-9.
- Kara M, Ozturk K, Ozer B. Kulak Burun Bogaz Ihtis Derg. 2013; 23:225-31.
- Lundeborg I, Hultcrantz E, Ericsson E, McAllister A. J Voice. 2012; 26:480-7.